51,568 research outputs found

    Phase Transition in Two Species Zero-Range Process

    Full text link
    We study a zero-range process with two species of interacting particles. We show that the steady state assumes a simple factorised form, provided the dynamics satisfy certain conditions, which we derive. The steady state exhibits a new mechanism of condensation transition wherein one species induces the condensation of the other. We study this mechanism for a specific choice of dynamics.Comment: 8 pages, 3 figure

    Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission

    Full text link
    We present results of a bright polarization-entangled photon source operating at 1552 nm via type-II collinear degenerate spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate crystal. We report a conservative inferred pair generation rate of 123,000 pairs/s/mW into collection modes. Minimization of spectral and spatial entanglement was achieved by group velocity matching the pump, signal and idler modes and through properly focusing the pump beam. By utilizing a pair of calcite beam displacers, we are able to overlap photons from adjacent down-conversion processes to obtain polarization-entanglement visibility of 94.7 +/- 1.1% with accidentals subtracted.Comment: 4 pages, 7 color figures. Revised manuscript includes the following changes: corrected pair generation rate from 44,000/s/mW pump to 123,000/s/mW pump; replaced Fig. 1b to enhance clarity; minor alterations to the title, abstract and introduction; grammatical correction

    Condensation transition in a model with attractive particles and non-local hops

    Full text link
    We study a one dimensional nonequilibrium lattice model with competing features of particle attraction and non-local hops. The system is similar to a zero range process (ZRP) with attractive particles but the particles can make both local and non-local hops. The length of the non-local hop is dependent on the occupancy of the chosen site and its probability is given by the parameter pp. Our numerical results show that the system undergoes a phase transition from a condensate phase to a homogeneous density phase as pp is increased beyond a critical value pcp_c. A mean-field approximation does not predict a phase transition and describes only the condensate phase. We provide heuristic arguments for understanding the numerical results.Comment: 11 Pages, 6 Figures. Published in Journal of Statistical Mechanics: Theory and Experimen

    Phase fluctuations in the ABC model

    Full text link
    We analyze the fluctuations of the steady state profiles in the modulated phase of the ABC model. For a system of LL sites, the steady state profiles move on a microscopic time scale of order L3L^3. The variance of their displacement is computed in terms of the macroscopic steady state profiles by using fluctuating hydrodynamics and large deviations. Our analytical prediction for this variance is confirmed by the results of numerical simulations

    Phase Transition in the ABC Model

    Full text link
    Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter qq describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work we consider the weak asymmetry regime q=exp(β/N)q=\exp{(-\beta/N)} where NN is the system size and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second order phase transition at some nonzero βc\beta_c. The value of βc=2π3\beta_c = 2 \pi \sqrt{3} and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean field equations and analyze some of their predictions.Comment: 18 pages, 3 figure

    Near-Infrared Observations of Powerful High-Redshift Radio Galaxies: 4C 40.36 and 4C 39.37

    Get PDF
    We present near-infrared imaging and spectroscopic observations of two FR II high-redshift radio galaxies (HzRGs), 4C 40.36 (z=2.3) and 4C 39.37 (z=3.2), obtained with the Hubble, Keck, and Hale Telescopes. High resolution images were taken with filters both in and out of strong emission lines, and together with the spectroscopic data, the properties of the line and continuum emissions were carefully analyzed. Our analysis of 4C 40.36 and 4C 39.37 shows that strong emission lines (e.g., [O III] 5007 A and H alpha+[N II]) contribute to the broad-band fluxes much more significantly than previously estimated (80% vs. 20-40%), and that when the continuum sources are imaged through line-free filters, they show an extremely compact morphology with a high surface brightness. If we use the R^1/4-law parametrization, their effective radii (r(e)) are only 2-3 kpc while their restframe B-band surface brightnesses at r(e) are I(B) ~ 18 mag/arcsec^2. Compared with z ~ 1 3CR radio galaxies, the former is x3-5 smaller, while the latter is 1-1.5 mag brighter than what is predicted from the I(B)-r(e) correlation. Although exponential profiles produce equally good fits for 4C 40.36 and 4C 39.37, this clearly indicates that with respect to the z~1 3CR radio galaxies, the light distribution of these two HzRGs is much more centrally concentrated. Spectroscopically, 4C 40.36 shows a flat (fnu=const) continuum while 4C 39.37 shows a spectrum as red as that of a local giant elliptical galaxy. Although this difference may be explained in terms of a varying degree of star formation, the similarities of their surface brightness profiles and the submillimeter detection of 4C 39.37 might suggest that the intrinsic spectra is equally blue (young stars or an AGN), and that the difference is the amount of reddening.Comment: 30 pages, 6 tables, 10 figures; Accepted for publication in Astronomical Journa

    Neutral B-meson mixing from three-flavor lattice QCD: Determination of the SU(3)-breaking ratio \xi

    Get PDF
    We study SU(3)-breaking effects in the neutral B_d-\bar B_d and B_s-\bar B_s systems with unquenched N_f=2+1 lattice QCD. We calculate the relevant matrix elements on the MILC collaboration's gauge configurations with asqtad-improved staggered sea quarks. For the valence light-quarks (u, d, and s) we use the asqtad action, while for b quarks we use the Fermilab action. We obtain \xi=f_{B_s}\sqrt{B_{B_s}}/f_{B_d}\sqrt{B_{B_d}}=1.268+-0.063. We also present results for the ratio of bag parameters B_{B_s}/B_{B_d} and the ratio of CKM matrix elements |V_{td}|/|V_{ts}|. Although we focus on the calculation of \xi, the strategy and techniques described here will be employed in future extended studies of the B mixing parameters \Delta M_{d,s} and \Delta\Gamma_{d,s} in the Standard Model and beyond.Comment: 36 pages, 7 figure

    Representations of p-brane topological charge algebras

    Full text link
    The known extended algebras associated with p-branes are shown to be generated as topological charge algebras of the standard p-brane actions. A representation of the charges in terms of superspace forms is constructed. The charges are shown to be the same in standard/extended superspace formulations of the action.Comment: 22 pages. Typos fixed, refs added. Minor additions to comments sectio

    Optical/Near-Infrared Imaging of Infrared-Excess Palomar-Green QSOs

    Get PDF
    Ground-based high spatial-resolution (FWHM < 0.3-0.8") optical and near-infrared imaging (0.4-2.2um) is presented for a complete sample of optically selected Palomar-Green QSOs with far-infrared excesses at least as great as those of "warm" AGN-like ultraluminous infrared galaxies (L_ir/L_big-blue-bump > 0.46). In all cases, the host galaxies of the QSOs were detected and most have discernable two-dimensional structure. The QSO host galaxies and the QSO nuclei are similar in magnitude at H-band. H-band luminosities of the hosts range from 0.5-7.5 L* with a mean of 2.3 L*, and are consistent with those found in ULIGs. Both the QSO nuclei and the host galaxies have near-infrared excesses, which may be the result of dust associated with the nucleus and of recent dusty star formation in the host. These results suggest that some, but not all, optically-selected QSOs may have evolved from an infrared-active state triggered by the merger of two similarly-sized L* galaxies, in a manner similar to that of the ultraluminous infrared galaxies.Comment: Aastex format, 38 pages, 4 tables, 10 figures. Higher quality figures are available in JPG forma
    corecore